طبقه بندی زعفران با استفاده از ویژگی های رنگی استخراج شده از تصویر
نویسندگان
چکیده مقاله:
طبقهبندی زعفران به عنوان گرانترین ادویه از اهمیت بالایی برای مشتریان و تجار برخوردار است. به طور کلی، در حال حاضر دو روش برای درجهبندی زعفران استفاده میشود. روش اول براساس تجربیات فرد خبره و با مشاهده نمونهها انجام میشود. روش دوم تخریبی بوده و با استفاده از متدهای آزمایشگاهی انجام میگیرد. طبق نظر متخصصان، استفاده از تکنیکهای یادگیری ماشین برای طبقهبندی زعفران به دلیل داشتن ماهیت غیر مخرب و خصوصیات بهنگام، یک هدف است. این روش همچنین میتواند باعث افزایش دقت فرآیند درجهبندی در مقیاس صنعتی شود. در این مقاله، یک روش مبتنی بر ماشین بینایی ارائه شده است. با توجه به عدم تحقیقات مستند در مورد این موضوع، جستجوی مشروح جامع در این کار ارائه میشود. تقریباً تمام ویژگیهای رنگ استخراج و در تعداد زیادی از طبقهبندی کنندهها استفاده شد. افراد خبره در ایران زعفران را بر اساس خصوصیات ظاهری به سه طبقه اصلی یعنی پوشال، نگین و سرگل طبقهبندی میکنند. در این مقاله، یک بانک اطلاعاتی متشکل از 440 تصویر از زعفران برای سه کلاس مختلف با استفاده از دوربین تلفن همراه جمعآوری شد. پس از اعمال تعدادی از مراحل پیش پردازش مانند حذف پس زمینه، بریدن و حذف مناطق ناخواسته تصاویر و غیره ، 21 ویژگی رنگی با استفاده از روش های مختلف تحلیل تصویر استخراج شد. برای طبقهبندی از 22 طبقهبندیگر استفاده شدند. مقایسه نتایج طبقهبندی کنندههای مختلف نشان داد که Linear Discriminant ، Linear SVM، Bagged Trees و RUSBoost Trees می توانند در هنگام استفاده از ویژگیهای رنگی، درجهبندی دقیقتری را نسبت به سایر طبقهبندی کنندهها ایجاد کنند. به طور خاص، دراین کار، میانگین دقت 23/82 درصد با استفاده از طبقهبندیکننده خطی SVM بدست آمد.
منابع مشابه
طبقه بندی و استخراج ویژگی الکتروانسفالوگرام صرعی با استفاده از روش های PCA،ICA،EMD،DWT و SVM
هدف این مقاله طبقه بندی سیگنال های الکتروانسفالوگرام به دو دسته صرعی و سالم می باشد. برای دستیابی به بالاترین دقت، از تکنیک های مختلف استفاده شده است. روش های تبدیل موجک و تجزیه حالت تجربی برای استخراج ویژگی های مورد نظر از این سیگنال ها به کار رفته است. این دو روش از لحاظ تاثیر در فرآیند طبقه بندی با یکدیگر مقایسه شده اند. جهت کاهش ابعاد فضای ویژگی، روش های تحلیل اجزای مستقل و اصلی مورد استفاد...
متن کاملبررسی تأثیر فرآیند خشک کردن بر ویژگی های رنگی گلبرگ زعفران با استفاده از ماشین بینایی
خشک کردن یکى از روشهاى رایج براى افزایش ماندگارى گیاهان دارویی و محصولات کشاورزى است. در این پژوهش، فرآیند خشک کردن گلبرگهای زعفران با خشک کن هوای داغ لایه نازک در پنج سطح دمای 40، 60، 80، 100 و 120 درجه سلسیوس و سه سرعت هوای 5/0، 1 و 5/1 متر بر ثانیه و تأثیرات آنها بر پارامترهای رنگی (مقادیر G ,R و B) مورد بررسی قرار گرفت. به کمک سامانه ماشین بینایی، تصاویر رنگی از نمونههای خشک شده گلبرگ ...
متن کاملطبقه بندی و استخراج ویژگی الکتروانسفالوگرام صرعی با استفاده از روش های PCA،ICA،EMD،DWT و SVM
هدف این مقاله طبقه بندی سیگنال های الکتروانسفالوگرام به دو دسته صرعی و سالم می باشد. برای دستیابی به بالاترین دقت، از تکنیک های مختلف استفاده شده است. روش های تبدیل موجک و تجزیه حالت تجربی برای استخراج ویژگی های مورد نظر از این سیگنال ها به کار رفته است. این دو روش از لحاظ تاثیر در فرآیند طبقه بندی با یکدیگر مقایسه شده اند. جهت کاهش ابعاد فضای ویژگی، روش های تحلیل اجزای مستقل و اصلی مورد استفاد...
متن کاملطبقه بندی اختلالات قلبی با استفاده از شبکه کوانتیزه کننده برداری و بر اساس ویژگی های استخراج شده از تبدیل ویولت
در این مقاله کارکرد شبکه عصبی کوانتیزه کننده برداری (LVQ) در طبقه بندی شش نوع سیگنال الکتروکاردیوگرام (ECG) با استفاده از ویژگی های استخراج شده به وسیله تبدیل ویولت مرتبه شش خانواده دابیچی بررسی شده است. شش سیگنال مورد نظر عبارت اند از: ECG <span lan...
متن کاملطبقه بندی تراکم توده های جنگلی با استفاده از تصویر ماهوارۀ IRS و الگوریتم ناپارامتریک kNN
برآوردهای کمّی و دقیق از مشخصههای تودههای جنگلی لازمه مدیریت صحیح آنها است. تصاویر سنجش از دور با توجه به اطلاعات مکانی دقیق و وسیع، همواره ابزاری مقرون به صرفه در مدیریت جنگل است و یکی از متداولترین کاربردهای تصاویر در علم جنگلداری، طبقهبندی مشخصههای تودههای جنگلی و تهیۀ نقشههای موضوعی آنها است. هدف این پژوهش بهینهسازی طبقهبندی تراکم (تعداد درختان در هکتار) در تودههای جنگلی با استفاده...
متن کاملدرجه بندی زعفران بر اساس ویژگی های ظاهری با استفاده از شبکه های عصبی مصنوعی
زعفران بهعنوان یک کالای تجاری مهم در کشور بهشمار میآید و توجه به مکانیزه کردن آن از مرحله تولید تا بستهبندی اهمیت زیادی دارد. در بدو ورود زعفران به فرایند کیفی سنجی در آزمایشگاه ، ارزیابی اولیه بر اساس مشخصات ظاهری زعفران توسط شخص خبره انجام میشود. لیکن بروز خطای انسانی در تشخیص کیفیت زعفران بر مبنای ویژگیهای ظاهری آن امری اجتنابناپذیر است؛ استفاده از تکنیکهای مبتنی بر هوش مصنوعی میت...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 3
صفحات 319- 399
تاریخ انتشار 2020-09-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023